Receptor tyrosine kinase, EphB4 (HTK), accelerates differentiation of select human hematopoietic cells.
نویسندگان
چکیده
EphB4 (HTK) and its ligand, ephrinB2, are critical for angiogenesis and result in fatal abnormalities of capillary formation in null mice. EphB4 was originally identified in human bone marrow CD34(+) cells by us and has since been reported to be expressed in erythroid progenitors, whereas the ligand ephrinB2 is expressed in bone marrow stromal cells. Reasoning that the developmental relationship between angiogenesis and hematopoiesis implies common regulatory molecules, we assessed whether EphB4 signaling influences the function and phenotype of primitive human hematopoietic cells. Ectopically expressed EphB4 in cell lines of restricted differentiation potential promoted megakaryocytic differentiation, but not granulocytic or monocytic differentiation. Primary cord blood CD34(+) cells transduced with EphB4 resulted in the elevated expression of megakaryocytic and erythroid specific markers, consistent with EphB4 selectively enhancing some lineage-committed progenitors. In less mature cells, EphB4 depleted primitive cells, as measured by long-term culture-initiating cells or CD34(+)CD38(-) cell numbers, and increased progenitor cells of multiple cell types. Effects of ectopic EphB4 expression could be abrogated by either targeted mutations of select tyrosine residues or by the tyrosine kinase inhibitor, genistein. These data indicate that EphB4 accelerates the differentiation of primitive cells in a nonlineage-restricted manner but alters only select progenitor populations, influencing lineages linked by common ancestry with endothelial cells. EphB4 enforces preferential megakaryocytic and erythroid differentiation and may be a molecular bridge between angiogenesis and hematopoiesis.
منابع مشابه
Selective expression of the receptor tyrosine kinase, HTK, on human erythroid progenitor cells.
HTK is a receptor tyrosine kinase of the Eph family. To characterize the involvement of HTK in hematopoiesis, we generated monoclonal antibodies against HTK and investigated its expression on human bone marrow cells. About 5% of the bone marrow cells were HTK+, which were also c-Kit+, CD34(low), and glycophorin A(-/low). Assays of progenitors showed that HTK+ c-Kit+ cells consisted exclusively ...
متن کاملFMS-like Tyrosine Kinase-3 Mutation in a Child with Standard-risk ALL and Normal Karyotype
FMS-like tyrosine kinase-3 is a receptor tyrosine kinase expressed by immature hematopoietic cells and is important for the normal development of stem cells and the immune system. Mutations of FMS-like tyrosine kinase-3 have been detected in about 30% of patients with acute myelogenous leukemia and a small number of patients with acute lymphoblastic leukemia. The FMS-like tyrosine kinase-3 muta...
متن کاملEphB4 Forward‐Signaling Regulates Cardiac Progenitor Development in Mouse ES Cells
Eph receptor (Eph)-ephrin signaling plays an important role in organ development and tissue regeneration. Bidirectional signaling of EphB4-ephrinB2 regulates cardiovascular development. To assess the role of EphB4-ephrinB2 signaling in cardiac lineage development, we utilized two GFP reporter systems in embryonic stem (ES) cells, in which the GFP transgenes were expressed in Nkx2.5(+) cardiac p...
متن کاملEphrin-independent regulation of cell substrate adhesion by the EphB4 receptor.
Receptor tyrosine kinases of the Eph family become tyrosine phosphorylated and initiate signalling events upon binding of their ligands, the ephrins. Eph receptors such as EphA2 and EphB4 are highly expressed but poorly tyrosine phosphorylated in many types of cancer cells, suggesting a limited interaction with ephrin ligands. Nevertheless, decreasing the expression of these receptors affects t...
متن کاملPEGylation Potentiates the Effectiveness of an Antagonistic Peptide That Targets the EphB4 Receptor with Nanomolar Affinity
The EphB4 receptor tyrosine kinase together with its preferred ligand, ephrin-B2, regulates a variety of physiological and pathological processes, including tumor progression, pathological forms of angiogenesis, cardiomyocyte differentiation and bone remodeling. We previously reported the identification of TNYL-RAW, a 15 amino acid-long peptide that binds to the ephrin-binding pocked of EphB4 w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Blood
دوره 99 8 شماره
صفحات -
تاریخ انتشار 2002